Những câu hỏi liên quan
Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2021 lúc 23:38

\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)

\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)

Tương tự và cộng lại:

\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)

Bình luận (0)
Phạm Thị Hường
Xem chi tiết
Seu Vuon
23 tháng 2 2015 lúc 21:34

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

Bình luận (0)
bao than đen
Xem chi tiết
Phan Nghĩa
Xem chi tiết
Kiệt Nguyễn
21 tháng 7 2020 lúc 11:04

Dễ mà, cần t sol ko?

Bình luận (0)
 Khách vãng lai đã xóa
Girl
21 tháng 7 2020 lúc 10:16

Schur thử xem?

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 7 2020 lúc 11:30

SOS chắc t ko có cửa đâu, chắc lại chờ anh tth đến làm vài đường cơ bản

\(BĐT\Leftrightarrow\frac{1}{2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\le1-\frac{a}{b+c}+1-\frac{b}{c+a}+1-\frac{c}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\le\frac{b+c-a}{b+c}+\frac{c+a-b}{c+a}+\frac{a+b-c}{a+b}\)

Đặt \(\hept{\begin{cases}b+c-a=x\\c+a-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\a+b+c=x+y+z\end{cases}}\)(Do a, b, c là độ dài 3 cạnh của tam giác)

Khi đó thì  \(a=\frac{y+z}{2},b=\frac{z+x}{2},c=\frac{x+y}{2}\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=\)\(2.\frac{y^2+2yz+z^2+z^2+2zx+x^2+x^2+2xy+y^2}{4}\)\(=x^2+y^2+z^2+xy+yz+zx\)

\(\Rightarrow\frac{b+c-a}{b+c}+\frac{c+a-b}{c+a}+\frac{a+b-c}{a+b}\)\(=\frac{2x}{2x+y+z}+\frac{2y}{2y+z+x}+\frac{2z}{2z+x+y}\)\(=\frac{2x^2}{2x^2+xy+zx}+\frac{2y^2}{2y^2+yz+xy}+\frac{2z^2}{2z^2+zx+yz}\)\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2+xy+yz+zx\right)}=\frac{\left(a+b+c\right)^2}{x^2+y^2+z^2+xy+yz+zx}\)\(=\frac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c hay tam giác ABC đều

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Văn A
Xem chi tiết
meme
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Bình luận (0)
BUI THI HOANG DIEP
Xem chi tiết
Bùi Anh Tuấn
5 tháng 11 2019 lúc 19:59

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

Bình luận (0)
 Khách vãng lai đã xóa
BUI THI HOANG DIEP
7 tháng 11 2019 lúc 16:25

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều

Bình luận (0)
 Khách vãng lai đã xóa
nguyễn thanh huyền
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 20:49

`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`

Bình luận (0)
Lê Thị Thục Hiền
22 tháng 5 2021 lúc 20:50

Áp dụng bđt cosi với hai số dương:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)     ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\)      ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)

\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)  (*)

Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\)  (2*)

Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)

=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều

=> Số đo các góc là 60 độ

 

Bình luận (0)
nhóc hỏi bài
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 16:12

a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Hay tam giác ABC đều

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 7 2019 lúc 9:29

Chọn D

Bình luận (0)